A unified approach to ranking in probabilistic databases
Title | A unified approach to ranking in probabilistic databases |
Publication Type | Journal Articles |
Year of Publication | 2009 |
Authors | Li J, Saha B, Deshpande A |
Journal | Proceedings of the VLDB Endowment |
Volume | 2 |
Issue | 1 |
Pagination | 502 - 513 |
Date Published | 2009/08// |
ISBN Number | 2150-8097 |
Abstract | The dramatic growth in the number of application domains that naturally generate probabilistic, uncertain data has resulted in a need for efficiently supporting complex querying and decision-making over such data. In this paper, we present a unified approach to ranking and top-k query processing in probabilistic databases by viewing it as a multi-criteria optimization problem, and by deriving a set of features that capture the key properties of a probabilistic dataset that dictate the ranked result. We contend that a single, specific ranking function may not suffice for probabilistic databases, and we instead propose two parameterized ranking functions, called PRFω and PRFe, that generalize or can approximate many of the previously proposed ranking functions. We present novel generating functions-based algorithms for efficiently ranking large datasets according to these ranking functions, even if the datasets exhibit complex correlations modeled using probabilistic and/xor trees or Markov networks. We further propose that the parameters of the ranking function be learned from user preferences, and we develop an approach to learn those parameters. Finally, we present a comprehensive experimental study that illustrates the effectiveness of our parameterized ranking functions, especially PRFe, at approximating other ranking functions and the scalability of our proposed algorithms for exact or approximate ranking. |
URL | http://dl.acm.org/citation.cfm?id=1687627.1687685 |